Mini Video Cameras Offer Peek at Hard-to-Observe Bird Behavior


Fledging behavior—when and why baby birds leave the nest—is something scientists know very little about. Rarely is someone watching a nest at just the right moment to see fledging happen. To get around this, the researchers behind a new study from The Auk: Ornithological Advances deployed miniature video cameras to monitor over 200 grassland bird nests in Alberta, North Dakota, Minnesota, and Wisconsin, and they found that fledglings’ decision-making process is more complex than anyone guessed.

Christine Ribic from the U.S. Geological Survey and her colleagues tested two competing hypotheses about fledglings’ decision making. Birds might leave the nest early in the day to maximize the amount of time they have to find a safe place to hide from predators before nightfall. Alternatively, once their siblings start to leave, the remaining birds might decide to stay in the nest longer to take advantage of reduced competition for the food their parents provide, resulting in spread-out fledging times. Video data analyzed by Ribic and her colleagues showed that the more siblings in a nest, the longer it took for all of them to fledge, consistent with the idea that some young may stay behind to take advantage of reduced competition after the first nestlings leave. Ribic and her co-authors discovered that 20% of nests took more than one day to completely finish fledging. Fledging behavior also varied between species and over the course of the breeding season, for reasons that remain unclear.

As they decide when to fledge, the nestlings of grassland birds are balancing two competing demands. On one hand, staying in the nest longer gives them more time to grow and develop before facing the risky outside world. On the other hand, predation risk might increase with time spent in the nest.

“It was exciting to see events naturally occurring in an area of avian biology where very little is known, and was only possible due to the use of video surveillance systems,” says Ribic. “It seems fledging is more complex than we previously thought. We were surprised by the span of time over which grassland bird species fledge, with some species starting to fledge in the early morning and others closer to noon, and by the frequency of fledgings that spanned multiple days.”

“Considerable research attention has focused on the breeding biology of birds, but until recently some events have been difficult to observe. Luckily, decreases in the size and cost of video equipment have allowed researchers to study these hard-to-observe events, such as the brief moments when a predator causes a nest to fail. This study took things a step further to begin exploring the point in time when young birds fledge from the nest,” adds the University of Illinois’s T.J. Benson, an expert of bird nesting behavior who was not involved in the study. “There are relatively few existing ideas for what influences the timing of nest departure by young birds, and Ribic and her colleagues put forth an interesting idea about the potential role of food availability in influencing fledging. Use of video technology to examine nest predation has become widespread, and this paper provides a great example of the other interesting aspects of breeding biology that can be examined in such studies.”

Diel fledging patterns among grassland passerines: Relative impacts of energetics and predation risk is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

“Live Fast, Die Young” Lifestyle Reflected in Birds’ Feathers

AUK-17-176 R Terrill 2
A museum specimen ready to be photographed. Photo credit: R. Terrill

Animals’ lives tend to follow a quicker tempo as they get farther from the equator—birds at more northern latitudes mature faster, start reproducing younger, and live shorter lives, probably as a way of dealing with seasonal variation in resources. A new study from The Auk: Ornithological Advances shows for the first time that this pattern also plays out in birds’ feathers, with northern birds completing their annual molt faster to keep up with the demands of life far from the tropics.

Louisiana State University’s Ryan Terrill looked at museum specimens of four bird species with ranges that span a wide swath of latitude in both the Northern and Southern Hemispheres. Slight differences in feather growth between day and night during birds’ annual molt produce visible pairs of light-colored bars, each pair representing 24 hours’ growth. Terrill could determine the rates at which individual feathers grew by measuring their spacing. He found that for all four species, individuals collected at higher latitudes had grown their feathers faster.

Terrill sees two potential explanations for this pattern, which aren’t mutually exclusive. First, where the availability of food changes with the seasons, birds may need to molt faster so that they have the necessary resources. Second, because birds at higher latitudes tend to be more invested in producing offspring than in extending their own survival, faster production of lower-quality feathers may be an acceptable tradeoff.

“Working with museum specimens was a lot of fun,” says Terrill. “One of my favorite things about museum specimens is using them in ways that other folks might not consider, and especially using them in ways for which the original collector couldn’t have known they might be useful. It wasn’t until recently that many people considered that how feathers grow might be important for birds or realized that you could measure feather growth rates on specimens, and I hope this study will publicize yet another way that museum specimens are useful for understanding birds.”

“Most aspects of avian molt, with the exception of feather-replacement sequence, are thought to be rather flexible. The timing, location, and extent of molts appear to respond quickly to environmental constraints, even within populations of the same species occurring at different latitudes, as either permanent or winter residents,” adds the Institute for Bird Population’s Peter Pyle, an expert on bird molt patterns who was not involved with the study. “Yet molt strategies remain vastly understudied compared to other avian topics such as breeding, migration, and behavioral responses. This paper shows that a fourth component of molt, feather growth rate, also appears to vary, with equatorial populations showing slower molt intensity than those of higher latitudes. The author ties this nicely in to other studies suggesting a decelerated pace of other life history traits in less seasonal environments, perhaps as a function of slower basal metabolic rates.”

Feather growth rate increases with latitude in four species of widespread resident Neotropical birds is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

A Better Way to Count Boreal Birds

CONDOR-18-32 C Kolaczan
Common Yellowthroats are among the birds for which new statistical models could provide better population estimates. Photo credit: C. Kolaczan

Knowing approximately how many individuals of a certain species are out there is important for bird conservation efforts, but raw data from bird surveys tends to underestimate bird abundance. The researchers behind a new paper from The Condor: Ornithological Applications tested a new statistical method to adjust for this and confirmed several mathematical tweaks that can produce better population estimates for species of conservation concern.

The University of Alberta’s Péter Sólymos and his colleagues tested a type of mathematical model called a “removal model” using bird count data for 152 species from the Boreal Avian Modelling Project, or BAM, which covers a vast area of Canada, Alaska, and the northeastern U.S. They found that incorporating variation in birds’ singing behavior improved models’ accuracy—how likely birds are to sing changes over the course of the day and the year, affecting how easy they are to detect. Extending the length of individual bird counts from three or five minutes to ten minutes was also beneficial.

“The chances of spotting something—a coin on the pavement, a bear in the mountains, or the apricot jam in the freezer—increases with effort,” explains Sólymos. “The more we walk, travel, look, or listen, the more things we find, but there is also a tradeoff between the number of places one can do a search and the length of the searches. Such decisions drive how long field biologists conduct bird counting at a given place. In our study, we looked at how the duration of counting influenced finding different bird species at different times of the day and the year. We also wanted to find the best way of how to standardize for different count durations and how to use these findings to provide better estimates of bird population sizes.”

This is more than just a math problem, however—accurate estimates of population size can be crucial for effective bird conservation, and many of the boreal bird species this study looked at are experiencing severe declines. This new approach offers a way to combine data from surveys that weren’t standardized in their design. “Population size of different species is one of the key metrics that affects their conservation importance, but estimating population size is a very challenging task that involves numerous assumptions,” says Sólymos. “Besides the ability to hopefully provide more accurate population size estimates, our modeling approach and findings can also help in timing of bird surveys to maximize the number of species detected.”

“While the authors of this study present the results of a rigorous comparison of modeling techniques to achieve better estimates of bird abundance from point counts, they also provide clear and simple recommendations on how and when to apply their findings to any study that expects to use time-interval point counts,” adds Jeff Wells, Science and Policy Director of the Boreal Songbird Initiative, who was not involved in the research. “This is a rich contribution not only to avian research methodology, but in the long run, also to bird conservation.”

Evaluating time-removal models for estimating availability of boreal birds during point count surveys: Sample size requirements and model complexity is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

How Does Agriculture Affect Vulnerable Insect-Eating Birds?

CONDOR-18-16 C Michelson
Tree Swallow with prey. Photo credit: C. Michelson

Aerial insectivores—birds that hunt for insect prey on the wing—are declining across North America as agricultural intensification leads to diminishing insect abundance and diversity in many areas. A new study from The Condor: Ornithological Applications looks at how Tree Swallows’ diets are affected by agriculture and finds that while birds living in cropland can still find their preferred prey, they may be working harder to get it.

The University of Saskatchewan’s Chantel Michelson, Robert Clark, and Christy Morrissey monitored Tree Swallow nest boxes at agricultural and grassland sites in 2012 and 2013, collecting blood samples from the birds to determine what they were eating via isotope ratios in their tissues. Tree Swallows usually prefer aquatic insects, which they capture in the air after they emerge from wetlands to complete their life cycles. The researchers suspected that birds living in crop-dominated areas would be forced to shift to eating more terrestrial insects, due to the effects of insecticide use and other agricultural practices on wetland habitat.

Instead, they found that swallows were eating more aquatic than terrestrial insects at all sites, and in 2012 it was actually the grassland birds whose diet contained a higher proportion of terrestrial insects. The results suggest that wetland habitat may provide a buffer against the negative effects of agriculture. However, birds living in cropland weighed less on average than their grassland-dwelling counterparts—a sign that they may be struggling.

“We set up this study to see if insectivorous swallows would be disadvantaged in agricultural croplands by shifting their normally aquatic diet to terrestrial insects to compensate for lower food availability. We were surprised that the birds did not generally do this,” says Morrissey. “Adult swallows in particular were heavily reliant on aquatic prey regardless of land use type. At the grassland dominated site, in fact, they fed their nestlings a wider variety of prey from both aquatic and terrestrial origin. Diet did not seem to influence body condition, but birds in cropland sites were lighter on average which may signal they are working harder in croplands to obtain their preferred aquatic prey. This work shows how important wetlands are for maintaining birds in agricultural landscapes and these are important reservoirs for conserving biodiversity in an otherwise heavily altered landscape.”

“Grasslands are one of the most imperiled ecosystems on the planet because their rich soils are ideal for agriculture. Pesticides and fertilizers are applied in ever-increasing quantities, which has serious implications for organisms that live there,” adds Acadia University’s Dave Shutler, an expert on Tree Swallow ecology who was not involved with the study. “This study compared the diets of Tree Swallows in natural grasslands and croplands, each of which had roughly similar wetland densities. Although diet composition was similar in both areas, it appears that diet quality was better in the natural grasslands, because birds there were heavier and in better condition than those in the cropland.”

Agricultural land cover does not affect diet of Tree Swallows in wetland dominated habitats is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

Woodpeckers and Development Coexist in Seattle

CONDOR-17-171 J Tomasevic
Pileated Woodpeckers peek from a tree cavity. Photo credit: J. Tomasevic

The two largest woodpeckers in North America, the Imperial Woodpecker and Ivory-billed Woodpecker, are believed to have gone extinct during the twentieth century. Can their surviving cousin, the Pileated Woodpecker, persist when standing dead trees and other crucial resources are lost to urbanization? A new study published by The Condor: Ornithological Applications tracked birds in suburban Seattle and found that as long as tree cover remains above a certain threshold, Pileated Woodpeckers and housing developments can coexist.

The University of Washington’s Jorge Tomasevic (now at the Universidad Austral de Chile) and John Marzluff trapped and radio-tagged 16 Pileated Woodpeckers at 9 sites with varying degrees of urbanization in suburban Seattle. Tracking each bird for about a year, they found that Pileated Woodpeckers used not only forested areas such as parks, but also lightly and moderately urbanized areas where some trees had been retained, taking advantage of resources such as backyard birdfeeders.

These results show that retaining at least 20% forest cover, including standing dead trees, over large suburban areas may help sustain Pileated Woodpeckers and perhaps even other species tied to them. Despite potential risks from threats such as feral cats and collisions with windows, the researchers believe that cities can play an important role in the conservation of biodiversity.

“You’d think that such large bird would be easy to find, especially when carrying a transmitter, but they did a very good job hiding,” says Tomasevic. “It was also very challenging to work in populated areas. I have so many anecdotes, good and bad, about dealing with people and people dealing with me doing my work. Some people were very friendly, but some were a little nervous with me walking around the neighborhood. I tried to look as official as possible, with University of Washington logos on my jacket, and I created a website for the project and printed some business cards. It was a great opportunity to do outreach, and I’m still friends with some of the neighborhood residents.”

“As suburban sprawl becomes more and more ubiquitous, it’s imperative that we consider which specific yard features can be promoted to share our neighborhoods with wildlife,” according to the University of Delaware’s Desiree Narango, an expert on avian urban ecology. “This paper is a nice example showing that even a mature forest specialist can use and navigate the suburban landscape if we provide the resources they need: large trees and some retained wooded areas.”

Use of suburban landscapes by the Pileated Woodpecker (Dryocopus pileatus) is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.